2-KETO-19-HYDROXYTEUSCORDIN, A NEO-CLERODANE DITERPENE FROM TEUCRIUM SCORDIUM

GEORGI Y. PAPANOV and PETER Y. MALAKOV

Department of Organic Chemistry, Plovdiv University, 24 "Tsar Assen" Street, 4000 Plovdiv, Bulgaria

(Revised received 16 June 1984)

Key Word Index—Teucrium scordium; Labiatae; diterpenoids; teucrin E; teucrin H4; new neo-clerodane derivative; 2-keto-19-hydroxyteuscordin.

Abstract—From the aerial parts of *Teucrium scordium*, a new neo-clerodane diterpenoid, 2-keto-19-hydroxyteuscordin, has been isolated, besides the previously known diterpenoids teucrin E and teucrin H4. The structure of 2-keto-19-hydroxyteuscordin, (12S)-15,16-epoxy-2-keto-19-hydroxy neo-clerodane-13(16),14-dien-18 β ,6 β :20,12-diolide, was established by chemical and spectroscopic means.

INTRODUCTION

In previous communications [1-3], we reported the isolation, from an acetone extract of *Teucrium scordium* L., of five new diterpenoids: teuscordinon [(12S)-15,16epoxy-6-keto-neo-clerodane-3,13(16),14-triene-18,19:20, 12-diolide], 6-keto-teuscordin [(12S)-15,16-epoxy-6keto-neo-clerodane-13(16),14-diene-18,19:20,12-diolide], 6β -hydroxyteuscordin [(12S)-15,16-epoxy- 6β -hydroxyneo-clerodane-3,13(16),14-triene-18,19:20,12-diolide], 6αhydroxyteuscordin [(12S)-15,16-epoxy-6α-hydroxy-neoclerodane-3,13(16),14-triene-18,19:20,12-diolide 2β , 6β -dihydroxyteuscordin [(12S)-15, 16-epoxy- 2β , 6β -dihydroxy-neo-clerodane-3,13(16),14-triene-18,18:20,12-diolide, besides the known substances teucrin E [(12S)-15,16-epoxy-6α-hydroxy-neo-clerodane-13(16),14-diene-18,19:20,12-diolide] and teucrin H4 [(12S)-15,16-epoxy-2α-hydroxy-19-nor-neo-clerodane-4,13(16),14-triene- $18,6\beta:20,12$ -diolide] [4-7]. In this communication, we report the structure determination of a new diterpenoid, 2-keto-19-hydroxyteuscordin (1), which has been isolated from the same plant.

RESULTS AND DISCUSSION

2-Keto-19-hydroxyteuscordin (1) had a molecular formula of C₂₀H₂₂O₇, from elemental analysis and mass spectroscopy. Its IR spectrum was consistent with the presence of a furan ring (3120, 1502, 1600, 872 cm⁻¹), two γ-lactone rings (1770, 1750 cm⁻¹), a ketone group (1710 cm^{-1}) and a hydroxyl group (3330 cm^{-1}) . The ¹H NMR spectrum (Table 1) of 1 showed signals for a β substituted furan ring (two α -furan protons at δ 7.68 and 7.59 and one β -furan proton at δ 6.49) and a secondary methyl group (δ 0.92), and also showed typical absorptions for a C-20,C-12-y-lactone (Table 1), identical to those found in the previously described diterpenoids [8-13]. In addition, 1 possessed a primary hydroxyl group attached to a fully substituted sp³ carbon atom. This presence of the hydroxyl group in 1 was revealed by treatment with trichloroacetylisocyanate, when the resonance of the corresponding >NH proton in the ¹H NMR spectrum appeared at $\delta 10.02$ as a singlet, while the double-doublets (δ 4.09 and 3.70 for 2H-19, Table 1) were reduced to an AB-type quartet (δ 4.90 and 4.33, J = 12 Hz). A double-doublet at δ 4.18 (Table 1), which was assigned to H_n -19, was coupled to a single proton

Table 1. ¹H NMR spectral data of compounds 1 and 2 (TMS as internal standard)

1			2
н	(400 MHz, pyridine-d ₅)	(100 MHz, Me ₂ CO-d ₆)	(100 MHz, CDCl ₃)
1β	3.08 dd		_
3β	2.62 dd		_
5	4.86 t	4.61 t	4.49
		•	overlapped s
7	2.82 dd		_
β	1.85 <i>dddd</i>	_	_
β	2.02 ddq		
0β	3.79 dd	3.38 dd	3.04 dd
I _A -11 I _B -11	2.48 dd \ 2.89 dd \	2.64 d	2.65 d
เ2้	5.51 dd	5.48 t	5.28 t
4	6.49 dd	6.46 m	6.28 m
15	7.59 dd	7.50m	7.34 m
16	7.68 dd	7.63 m J	
Me-17	0.92 d	1.02 d	1.09 d
H _A -19	4.42 d	4.09 dd	4.58 d
H _B -19	4.18 dd	3.70 dd	4.40 d
OAc		_	1.98 s

J (Hz): 1α , $10\beta = 11_A$, $11_B = 11$; 1β , $10\beta = 3.5$; 3β , $4\alpha = 3.6$; 7α , $7\beta = 7\alpha$, $8\beta = 15$; 8β , $7\beta = 4.2$; 6α , $7\beta = 6\alpha$, $7\alpha = 2.6$; 11_A , $12 = 11_B$, 12 = 8; 19_A , $19_B = 11.5$; 19_B , $6\alpha = 1.5$; 8β , 17 = 6.5; 14, 15 = 15, 16 = 1.7; 14, 16 = 1.

J (Hz) of 1 in Me₂CO- d_6 : 6α , $7\beta = 6\alpha$, $7\alpha = 3$; 1α , $10\beta = 11_A$, $11_B = 11$; 1β , $10\beta = 4$; 11_A , $12 = 11_B$, 12 = 8; 19_A , $19_B = 14$; 19_A , OH = 19_B , OH = 4; 8β , 17 = 6.5.

resonance at $\delta 4.86$ ($J_{19}H_{B^{\circ}6}H\alpha = 1.5$ Hz). On the other hand, on irradiation at $\delta 4.86$ (6-H α), the double-doublet at $\delta 4.18$ was transformed into a doublet. Acetic anhydride-pyridine treatment of 2-keto-19-hydroxyteuscordin (1) yielded the derivative 2, the ¹H NMR spectrum of which (Table 1) showed that the AB system ($\delta 4.58$ and 4.40), was paramagnetically shifted, thus confirming that the free alcohol group of 1 was a primary one. The presence of a keto group was indicated by IR and ¹³C NMR (Table 2) (δ 206.3) data and was confirmed by sodium borohydride reduction of 2 to give a $C_{22}H_{26}O_8$ derivative (3), the IR spectrum of which showed a hydroxyl absorption (3500 cm⁻¹) instead of the absorption of the keto group.

All the above data must be accommodated in a structure such as 3. The secondary hydroxyl group was placed at C-2 in an equatorial position on the basis of the following considerations. (1) The ¹H NMR signal of the geminal proton of the secondary hydroxyl group appeared as a dddd at $\delta 3.18$ with $J_{2\beta,1\beta} = J_{2\beta,3\beta} = 3$ Hz and $J_{2\beta,1\alpha} = J_{2\beta,3\alpha} = 10$ Hz thus it was axial. (2) The proton at C-10 in 3 was shifted upfield ($\Delta \delta - 0.54$) when the C-2 keto group of 2 was reduced. According to the ¹H-¹H coupling (J = 3 Hz), H-6 in compounds 1-3 was equatorial, hence the C-18/C-6 lactonic bridge must be diaxial [14], and the fact that the C-10 proton in compounds 1-3 appeared as a double-doublet ($J_1 = 11$ Hz, $J_2 = 3$ -4 Hz) confirmed that it was trans to the C-20 lactone function [3, 7, 15-17]. All these data suggested structure 1 for 2-keto-19-hydroxyteuscordin,

Table 2. ¹³C NMR data of compound 1 (100.6 MHz, pyridine-d₅, TMS as internal standard)

С		C	
1 29	9.8 t	11	40.9 t
2 206	5.3 s	12	71.9 d
3 38	3.0 t	13	125.6 s
4 42	2.7 d	14	108.7 d
5 47	7.6 s*	15	144.7 d
6 78	3.2 d	16	140.7 d
7 37	7.0 t	17	16.1 q
8 32	2.9 d	18	177.1 s
9 47	7.8 s*	19	58.3 t
10 43	3.9 d	20	178.7 s

^{*}Assignments may be interchanged.

and this was also supported by its ¹³C NMR spectral data. The stereochemistry of the other chiral centres and the *trans* junction of rings A and B were deduced from spin-decoupling experiments and by comparing the ¹³C NMR chemical shift data of 1 with those reported for related compounds [9, 11, 13, 14].

EXPERIMENTAL

Mps (Kofler apparatus) are uncorr; ¹H NMR and ¹³C NMR: 100 and 400 MHz and 100.6 MHz, respectively, in pyridine-d₅, Me₂CO-d₆ or CDCl₃ soln with TMS as internal standard. Assignments of ¹³C NMR chemical shifts were made with the aid of off-resonance and noise-decoupled ¹³C NMR spectra. Plant materials were collected in July 1982 near Sadovo, Bulgaria.

Extraction and isolation of the diterpenoids. Dried and finely powdered T. scordium aerial parts (5.7 kg) were extracted with Me₂CO (601.) at room temp. for 1 week. After evapn of the solvent, the residue was treated as in refs. [18, 19]. The CHCl₃ extract (63 g) was chromatographed over a silica gel (1000 g, Merck, 0.063-0.200 mm, deactivated with 10% H₂O), column with CHCl₃, CHCl₃-MeOH (47:3) mixtures as eluants, yielding the following compounds in order of elution: 6-keto-teuscordin, teuscordinon, a mixture of 6β-hydroxyteuscordin and 2-keto-19hydroxyteuscordin, teucrin E, 6a-hydroxyteuscordin, teucrin H4, 2β,6β-dihydroxyteuscordin and montanin E [20]. The mixture of 6β-hydroxyteuscordin and 2-keto-19-hydroxyteuscordin (270 mg) was rechromatographed over a silica gel (Merck, N 7754 deactivated with 10% H₂O) column eluted with CHCl₃-MeOH (99:1), yielding 6β-hydroxyteuscordin (140 mg), a less polar compound and 2-keto-19-hydroxyteuscordin (1, 120 mg), which was recrystallized from MeOH-Et₂O to yield pure compound 1 (105 mg). The previously known products (teucrins E and H4) were identified by their physical (mp, $[\alpha]_D$) and spectroscopic (IR, ¹H NMR) data and by comparison with authentic samples.

2-Keto-19-hydroxyteuscordin (1). Mp 196–199° (from Me_2CO-Et_2O); [α] $_D^{28}$ + 138.8° (Me_2CO ; c 0.17); IR v_{max}^{KBr} cm $^{-1}$: 3330 (OH), 3120, 1600, 1502, 872 (furan ring), 1770, 1750 (y-lactones), 1710 (ketone), 2940, 2850, 1480, 1440, 1390, 1330, 1180, 1160, 1100, 1020, 980, 960, 920, 790, 745; 1H NMR: see Table 1; MS (direct inlet) 75 eV, m/z (rel. int.): 374 [M] $^+$ (10), 356 [374 $- H_2O$] $^+$ (6), 344 (11), 328 (7), 280 (4), 279 (8), 262 (5), 235 (3), 234 (7), 233 (3), 161 (8), 159 (4), 133 (5), 131 (3), 119 (10), 105 (14), 96 (11), 95 (100), 94 (38), 91 (17), 82 (15), 81 (20), 77 (11), 67 (16), 65 (10), 55 (18), 53 (9). (Found: C, 64.28; H, 6.01. $C_{20}H_{22}O_7$ requires: C, 64.16; H, 5.92%.)

Acetylation of 1. A soln of 70 mg 1 in 0.8 ml pyridine and 0.2 ml Ac₂O was left to stand overnight at room temp. Usual work-up and recrystallization from Me₂CO–Et₂O yielded 2, mp 128–131°; IR $\nu_{\rm max}^{\rm KBr}$ cm⁻¹: 3130, 1500, 870 (furan ring), 1770, 1758 (y-lactones), 1730, 1230 (acetate), 1710 (ketone), 2950, 2840, 1390, 1360, 1310, 1180, 1150, 1020, 960, 920; ¹H NMR (100 MHz, CDCl₃): see Table 1. (Found: C, 63.09; H, 5.38. C₂₂H₂₄O₈ requires: C, 63.45; H, 5.78 %.)

Reduction of 2. A soln of 2 (40 mg) in MeOH was treated with excess NaBH₄ at room temp. for 10 min. The excess of reagent was then destroyed by addition of Me₂CO. Work-up in the usual manner yielded 3 (30 mg), mp 199–201°. IR $v_{\rm max}^{\rm KBr}$ cm⁻¹: 3500 (hydroxyl), 3160, 3130, 1510, 870 (furan ring), 1770, 1750 (y-lactones), 1730, 1230 (acetate), 2930, 2830, 2850, 1390, 1320, 1180, 1150, 1120, 1020, 980, 960, 820, 760, 740, 720. ¹H NMR (100 MHz, pyridine- d_5): δ 7.39 2H, m, H-15 and H-16), 6.37 (1H, m, H-14), 5.36 (1H, t, t) = 8.5 Hz, H-12), 4.45 (1H, t, t) = 3 Hz, H-6), 5.16 and 4.48 (AB system t) = 12 Hz, 2H-19), 3.18 (1H, t) dddd, t) = 10, t0, 2 = 3 Hz, H-2), 2.50 (1H, t0, t1, 1.96 (3H, t3, -OAc) and 0.95

(3H, d, J = 6.5 Hz, H-17). (Found: C, 62.79; H, 5.87. $C_{22}H_{26}O_8$ requires: C, 63.15; H, 6.26%.) ¹H NMR (100 MHz, (CD₃)₂CO) spectral data of 1 plus trichloroacetylisocyanate: δ 10.02 (1H, s NH), 7.65 (1H, m, H-16), 7.46 (1H, m, H-15), 6.40 (1H, m, H-14), 5.49 (1H, t, J = 8 Hz), 4.90 and 4.33 (AB system, J = 12 Hz, 2H-19), 4.69 (1H, t, J = 3 Hz, H-6), 3.40 (1H, dd, J_1 = 11, J_2 = 3.5 Hz, H-10), 2.92 (1H, d, J = 11 Hz, H-11) and 1.06 (3H, d, J = 6.5 Hz, H-17).

Acknowledgements—We are grateful to Drs. G. B. Oganessian and V. A. Mnatsakanian, Institute of Fine Organic Chemistry of the Armenian Academy of Sciences, for a sample of teucrin H4.

REFERENCES

- Papanov, G., Malakov, P. and Bohlmann, F. (1981) Phytochemistry 20, 170.
- Papanov, G. and Malakov, P. (1981) Z. Naturforsch. Teil B 36, 112.
- Papanov, G. and Malakov, P. (1982) Z. Naturforsch. Teil B 37, 519.
- Papanov, G. and Malakov, P. (1980) Z. Naturforsch. Teil B 35, 764.
- Reinbol'd, A. M. and Popa, D. P. (1974) Khim. Prir. Soedin. 589.
- Oganessian, G. B. and Mnatsakanian, V. A. (1977) Khim. Prir. Soedin. 215.

- Gacs-Baitz, E., Radics, L., Oganessian, G. B. and Mnatsakanian, V. A. (1978) Phytochemistry 17, 1867.
- 8. Brieskorn, C. H. and Pfeuffer, T. (1967) Chem. Ber. 100, 1998.
- Gacs-Baitz, E., Kajtar, M., Papanov, G. and Malakov, P. (1982) Heterocycles 19, 539.
- Bruno, M., Savona, G., Pascual, C. and Rodriguez, B. (1981) Phytochemistry 20, 2259.
- Savona, G., Garcia-Alvarez, C. and Rodriguez, B. (1982) Phytochemistry 21, 721.
- Marco, J. L., Rodriguez, B., Savona, G. and Piozzi, F. (1982) Phytochemistry 21, 2567.
- Marco, J. L., Rodriguez, B., Pascual, C., Savona, G. and Piozzi, F. (1983) Phytochemistry 22, 727.
- Savona, G., Paternostro, M., Piozzi, F. and Rodriguez, B. (1980) Heterocycles 14, 193.
- Savona, G., Paternostro, M., Piozzi, F., Hanson, J. R., Hitchcock, P. B. and Thomas, S. A. (1979) J. Chem. Soc. Perkin Trans. 1, 1915.
- Node, M., Sai, M. and Fujita, E. (1981) Phytochemistry 20, 757
- Chatterjee, A., Banerjee, A. and Bohlmann, F. (1978) Phytochemistry 17, 1777.
- 18. Popa, D. and Reinbol'd, A. (1972) Khim. Prir. Soedin. 57.
- Malakov, P., Papanov, G., Mollov, N. and Spassov, S. (1978) Travaux Scientifiques, Chimie, Vol. 16, p. 215. Université de Ploydiv.
- Papanov, G. and Malakov, P. (1983) Phytochemistry 22, 2791.